Detection, diversity and expression of aerobic bacterial arsenite oxidase genes.
نویسندگان
چکیده
The arsenic (As) drinking water crisis in south and south-east Asia has stimulated intense study of the microbial processes controlling the redox cycling of As in soil-water systems. Microbial oxidation of arsenite is a critical link in the global As cycle, and phylogenetically diverse arsenite-oxidizing microorganisms have been isolated from various aquatic and soil environments. However, despite progress characterizing the metabolism of As in various pure cultures, no functional gene approaches have been developed to determine the importance and distribution of arsenite-oxidizing genes in soil-water-sediment systems. Here we report for the first time the successful amplification of arsenite oxidase-like genes (aroA/asoA/aoxB) from a variety of soil-sediment and geothermal environments where arsenite is known to be oxidized. Prior to the current work, only 16 aroA/asoA/aoxB-like gene sequences were available in GenBank, most of these being putative assignments from homology searches of whole genomes. Although aroA/asoA/aoxB gene sequences are not highly conserved across disparate phyla, degenerate primers were used successfully to characterize over 160 diverse aroA-like sequences from 10 geographically isolated, arsenic-contaminated sites and from 13 arsenite-oxidizing organisms. The primer sets were also useful for confirming the expression of aroA-like genes in an arsenite-oxidizing organism and in geothermal environments where arsenite is oxidized to arsenate. The phylogenetic and ecological diversity of aroA-like sequences obtained from this study suggests that genes for aerobic arsenite oxidation are widely distributed in the bacterial domain, are widespread in soil-water systems containing As, and play a critical role in the biogeochemical cycling of As.
منابع مشابه
Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments.
The identification and characterization of genes involved in the microbial oxidation of arsenite will contribute to our understanding of factors controlling As cycling in natural systems. Towards this goal, we recently characterized the widespread occurrence of aerobic arsenite oxidase genes (aroA-like) from pure-culture bacterial isolates, soils, sediments and geothermal mats, but were unable ...
متن کاملDiversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria.
A new primer set was designed to specifically amplify ca. 1,100 bp of aoxB genes encoding the As(III) oxidase catalytic subunit from taxonomically diverse aerobic As(III)-oxidizing bacteria. Comparative analysis of AoxB protein sequences showed variable conservation levels and highlighted the conservation of essential amino acids and structural motifs. AoxB phylogeny of pure strains showed well...
متن کاملRemodulation of central carbon metabolic pathway in response to arsenite exposure in Rhodococcus sp. strain NAU‐1
Arsenite-tolerant bacteria were isolated from an organic farm of Navsari Agricultural University (NAU), Gujarat, India (Latitude: 20°55'39.04″N; Longitude: 72°54'6.34″E). One of the isolates, NAU-1 (aerobic, Gram-positive, non-motile, coccobacilli), was hyper-tolerant to arsenite (As(III), 23 mM) and arsenate (As(V), 180 mM). 16S rRNA gene of NAU-1 was 99% similar to the 16S rRNA genes of Rhodo...
متن کاملRegulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1
Previously, the expression of arsenite [As(III)] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III)-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III)-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and g...
متن کاملEFFECT OF AEROBIC TRAINING ON EXPRESSION OF PGC-1Α & PEPCK GENES IN HEPATOCYTE OF STREPTOZOTOCIN-INDUCED DIABETIC MALE RATS
Background & Aims: Recently, molecular cell studies about the effect of physical exercises on diabetics have attracted the attention of many researchers. The purpose of this study is to investigate the effect of 10 weeks aerobic training on the expression of PGC-1a and PEPCK genes in hepatocyte of nicotinamide-Streptozotocin-induced diabetic male rats. Materials & Methods: In this experimental...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental microbiology
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2007